Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dopant-induced band filling and bandgap renormalization in CdO: In films

Identifieur interne : 000292 ( Chine/Analysis ); précédent : 000291; suivant : 000293

Dopant-induced band filling and bandgap renormalization in CdO: In films

Auteurs : RBID : Pascal:13-0243644

Descripteurs français

English descriptors

Abstract

The effect of carrier concentration on the Fermi level and bandgap renormalization in over 30 indium-doped cadmium oxide (CdO: In) films with carrier concentrations ranging from 1 to 15 × 1020 cm-3 was studied using the two-band k . p model with electron-electron and electron-ion interactions. It is shown that the Tauc relation, which is based on parabolic valence and conduction bands, overestimates the optical bandgap in the CdO films. Theoretical calculations of the optical bandgap give good agreement with experiments by taking into account the Burstein-Moss effect for a nonparabolic conduction band and bandgap renormalization effects. The band filling and bandgap renormalization in these CdO: In films are about 0.5-1.2 eV and 0.1-0.3 eV, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0243644

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Dopant-induced band filling and bandgap renormalization in CdO: In films</title>
<author>
<name>YUANKUN ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Composite Materials and Structures, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mendelsberg, Rueben J" uniqKey="Mendelsberg R">Rueben J. Mendelsberg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Plasma Applications Group, Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Materials Science Division, Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Argonne, IL 60439</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIAQI ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Composite Materials and Structures, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIECAI HAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Composite Materials and Structures, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anders, Andre" uniqKey="Anders A">André Anders</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Plasma Applications Group, Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0243644</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0243644 INIST</idno>
<idno type="RBID">Pascal:13-0243644</idno>
<idno type="wicri:Area/Main/Corpus">000A29</idno>
<idno type="wicri:Area/Main/Repository">000F28</idno>
<idno type="wicri:Area/Chine/Extraction">000292</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Burstein Moss effect</term>
<term>Cadmium oxide</term>
<term>Carrier density</term>
<term>Doped materials</term>
<term>Electron ion interaction</term>
<term>Energy gap</term>
<term>Energy level population</term>
<term>Fermi level</term>
<term>Indium additions</term>
<term>Renormalization</term>
<term>Valence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Population niveau énergie</term>
<term>Bande interdite</term>
<term>Renormalisation</term>
<term>Densité porteur charge</term>
<term>Niveau Fermi</term>
<term>Matériau dopé</term>
<term>Addition indium</term>
<term>Oxyde de cadmium</term>
<term>Interaction électron ion</term>
<term>Valence</term>
<term>Effet de Burstein Moss</term>
<term>CdO</term>
<term>7120</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Valence (Drôme)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of carrier concentration on the Fermi level and bandgap renormalization in over 30 indium-doped cadmium oxide (CdO: In) films with carrier concentrations ranging from 1 to 15 × 10
<sup>20</sup>
cm
<sup>-3</sup>
was studied using the two-band k . p model with electron-electron and electron-ion interactions. It is shown that the Tauc relation, which is based on parabolic valence and conduction bands, overestimates the optical bandgap in the CdO films. Theoretical calculations of the optical bandgap give good agreement with experiments by taking into account the Burstein-Moss effect for a nonparabolic conduction band and bandgap renormalization effects. The band filling and bandgap renormalization in these CdO: In films are about 0.5-1.2 eV and 0.1-0.3 eV, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>46</s2>
</fA05>
<fA06>
<s2>19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Dopant-induced band filling and bandgap renormalization in CdO: In films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUANKUN ZHU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MENDELSBERG (Rueben J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JIAQI ZHU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIECAI HAN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ANDERS (André)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Composite Materials and Structures, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Plasma Applications Group, Lawrence Berkeley National Laboratory</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Materials Science Division, Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>195102.1-195102.5</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000173380060030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0243644</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of carrier concentration on the Fermi level and bandgap renormalization in over 30 indium-doped cadmium oxide (CdO: In) films with carrier concentrations ranging from 1 to 15 × 10
<sup>20</sup>
cm
<sup>-3</sup>
was studied using the two-band k . p model with electron-electron and electron-ion interactions. It is shown that the Tauc relation, which is based on parabolic valence and conduction bands, overestimates the optical bandgap in the CdO films. Theoretical calculations of the optical bandgap give good agreement with experiments by taking into account the Burstein-Moss effect for a nonparabolic conduction band and bandgap renormalization effects. The band filling and bandgap renormalization in these CdO: In films are about 0.5-1.2 eV and 0.1-0.3 eV, respectively.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A20</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Population niveau énergie</s0>
<s5>42</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Energy level population</s0>
<s5>42</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Población nivel energía</s0>
<s5>42</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>43</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>43</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Renormalisation</s0>
<s5>44</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Renormalization</s0>
<s5>44</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>45</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>45</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>46</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>46</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>50</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>57</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>57</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Oxyde de cadmium</s0>
<s5>62</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Cadmium oxide</s0>
<s5>62</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cadmio óxido</s0>
<s5>62</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Interaction électron ion</s0>
<s5>63</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electron ion interaction</s0>
<s5>63</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Interacción electrón ión</s0>
<s5>63</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Valence</s0>
<s5>64</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Valence</s0>
<s5>64</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Effet de Burstein Moss</s0>
<s5>65</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Burstein Moss effect</s0>
<s5>65</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Efecto Burstein Moss</s0>
<s5>65</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>CdO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>7120</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>231</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000292 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000292 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0243644
   |texte=   Dopant-induced band filling and bandgap renormalization in CdO: In films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024